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A set of future extreme precipitation probabilities are developed for New York State based on different
downscaling approaches and climate model projections. Based on nearly 50 downscaling method-
climate model combinations, percent differences are computed between simulated extreme precipitation
amounts for one historical (1970–1999) and three future (2010–2039, 2040–2069, and 2070–2099) time
periods. These percent change factors are then applied to the observed extremes to estimate future
precipitation extremes. The results are presented to users via an interactive website (http://ny-idf-
projections.nrcc.cornell.edu). As the engineering community is the primary user, the website displays
intensity-duration-frequency (IDF) graphs depicting the: 1) mean projected extreme precipitation inten-
sity, 2) range of future model projections, 3) distribution of observed extreme precipitation intensities, 4)
confidence intervals about the observed values.
One-hundred-year recurrence interval precipitation amounts exhibit a median increase of between 5

and 10% across the state in the 2010–2039 period regardless of greenhouse gas concentration. By the
2040–2069 period, the median increase is on the order of 10–20% for the high concentration case (RCP
8.5), but remains below 10% if concentrations are lower (RCP 4.5). At the end of the century, all downscal-
ing method climate model combinations indicate increases, with a median change of between 20 and 30%
in the case of high concentrations.

� 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Practical Implications

In 2014, New York State (NYS) enacted the Community Risk and Resiliency Act (CRRA). This act requires applicants (e.g. local
communities) as well as state agencies to consider future flood risk in planning and constructing public infrastructure. State agencies
must also consider these hazards in funding or permitting decisions. Although CRRA mandates consideration of future climate risks,
it offers no implementation guidance. Rather, CRRA requires the NYS Department of Environmental Conservation (DEC) to develop
such guidance.In addition to sea-level rise, NYS views effective implementation of the CRRA as dependent on projections of future
extreme precipitation frequency. Current design standards for hydrologic and transportation infrastructure, as well as public and
environmental safety regulations, are based on historical precipitation recurrence probabilities. An underlying assumption of these
extreme precipitation analyses has been the stationarity of the historical record. Recently the validity of this assumption has been
called into question, as numerous studies have shown a significant increase in the frequency andmagnitude of extreme precipitation
across the northeastern United States since the mid-20th century.This work describes the development of a set of future precipitation
recurrence probabilities for NYS using a set of nearly 50 downscaled climate model projections. Based on different statistical or
dynamical downscaling approaches and different global climate models, percent differences were computed between simulated
extreme precipitation amounts for one historical (1970–1999) and three future (2010–2039, 2040–2069, and 2070–2099) time periods.
These percent change factors were then applied to the observed extremes to estimate future precipitation extremes. An ensemble
mean value and range (10th–90th percentile) of future projections were obtained from the set of climate model-downscaling method
combinations.An interactive website (http://ny-idf-projections.nrcc.cornell.edu) facilitates access of the results by the user commu-
nity, with products tailored to both engineers and less technical users. Station-specific intensity-duration-frequency (IDF) graphs
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(Fig. 10) provide the data necessary for engineering applications to demonstrate consideration of future climate conditions. The IDF
graphs present four key pieces of information: 1) mean projected extreme precipitation intensity in future time periods, 2) a measure
of variability in the future model projections; 3) historical extreme precipitation statistics based on station data; and 4) confidence
intervals illustrating the uncertainty inherent to historical values. This allows users to weigh the future changes relative to a range
of equally plausible precipitation extremes based on historical data.Complementary map-based products offer non-technical users a
cursory statewide view of the projected changes in extreme precipitation. The results show that continued increases in extreme pre-
cipitation are expected across NYS, with little spatial variability in the magnitude of percent change relative to historical precipitation
extremes. In the early part of the 21st century, the average increase in recurrence interval precipitation amounts is typically 5–10%
(Fig 6a) with considerable overlap between the historical confidence intervals and range of future model projections. By mid-century
(2040–2069), increases are generally in the 10–20% range assuming continued high greenhouse gas concentrations (Fig 6b). The late-
century (2070–2099) estimates show the most model-to-model variability with increases averaging between 15–25% (Fig. 6c), but
exceeding 50% at some stations. By late century, precipitation intensities that currently have a 1% chance of occurring in any year
are expected to occur at least twice as frequently across much of the state (Fig. 11).
1. Introduction

Extreme precipitation has important implications for urban
and rural development, public infrastructure, watershed manage-
ment, agriculture, and human health. Historical climate records
indicate that the northeastern U.S. has experienced significant
increases in extreme precipitation since the mid-to-late twentieth
century (DeGaetano, 2009; Heineman, 2012; Kunkel et al., 1999;
Kunkel, 2003). Moreover, the most recent assessment from the
Intergovernmental Panel on Climate Change (IPCC, 2014) reports
with likely confidence that the frequency and magnitude of
extreme precipitation in this region will continue to increase
throughout the twenty-first century. Such changes will
exacerbate the societal impacts of extreme precipitation in the
future.

The Northeast U.S. is not the only region that has been expe-
riencing greater extreme precipitation frequency and magnitude.
Similar trends are noted in the central U.S. (Groisman et al., 2012)
as well as many other regions throughout the world (Groisman
et al., 2005; Fischer and Knutti, 2016). Other measures of extreme
precipitation, such as maximum 5-day accumulation and precip-
itation amount on extremely wet days, have also shown increas-
ing trends in the U.S., Europe, and Australia (Janssen et al., 2014;
Moberg and Coauthors, 2006; Alexander and Arblaster, 2009).
Other recent examples in the literature demonstrate the extent
to which extreme precipitation has increased from both regional
(e.g. Scherrer et al., 2016; Limsakul and Singhruck, 2016) and glo-
bal (e.g. Donat et al., 2016) perspectives. Coumou and Rahmstorf
(2012) point to increases in atmospheric water vapor (consistent
with increasing average temperature) and increases in the fre-
quency of local convective storm events (also enhanced by warm-
ing surface temperatures) as physical reasons for these changes.
However, in some regions, linkages to certain atmospheric circu-
lation patterns have been posed as influencing changes in precip-
itation extremes (e.g. Kenyon and Hegerl, 2010). Climate model
simulations suggest a continuation of these extreme precipitation
trends through the 21st century (e.g. Donat et al., 2016; Ning
et al., 2015; Sun et al., 2016).

Engineering design has long relied on statistical extreme value
analysis of precipitation (Yarnell, 1935). Intensity duration fre-
quency (IDF) curves typically serve as a conduit for translating pre-
cipitation to runoff volume, particularly in basins under 65 km2

.

These curves specify precipitation intensity (mm hr�1) as a function
of storm duration and average return frequency.

An underlying assumption of traditional IDF analyses has been
stationarity of the climate. Hence, it was expected that past condi-
tions were an adequate guide to the future. However, given the
many studies documenting observed and projected increases in
extreme precipitation frequency, decision makers have begun to
question this assumption and seek information regarding
projected future extreme precipitation frequency. Most efforts to
estimate future IDF information have been on a case-by-case basis,
often at the city level. This is quite different from historical
extreme precipitation analyses that have typically been published
at broad national or regional scales (e.g. Perica et al., 2013). Like-
wise, existing IDF projections have been developed by a range of
climate service providers ranging from government and academia
to the private sector, as opposed to historical analyses that have
been almost exclusively developed by government agencies and
then applied to specific locations or projects by the consulting
industry.

An example of city-level IDF projections (AMEC Environment
Infrastructure, 2012) uses the generalized linear model approach
of Towler et al. (2010) to estimate future IDF values for Welland,
Ontario, Canada using climate model output as predictors. Rela-
tive to the existing Welland IDF curve that was compiled in
1963, they found that precipitation intensities on average
decrease through 2050. Wang et al. (2015) developed projected
IDF curves for other cities in Ontario, Canada, using dynamically
downscaled precipitation data from a regional climate modeling
system (PRECIS; Wilson et al., 2011) driven by an ensemble of
Hadley Centre Coupled Model, version 3 (HadCM3) output. They
found that projected 24-h 100-year precipitation amounts
increased by about 25% from the historical base period to the
2080s. Rodríguez et al. (2014) used a statistical downscaling
approach to investigate changes in IDF curves for Barcelona,
Spain. They found projected increases in precipitation extremes
of between 3 and 14% by the late 21st century for recurrence
intervals ranging from 10 to 500 years.

This paper discusses a project designed to provide NYS with
guidance regarding plausible future changes in extreme precipita-
tion return frequency. One of the impetuses for this work is the
Climate Risk and Resiliency Act (CRRA), which requires specific
state permitting, funding and regulatory decisions to demonstrate
that future climate risks associated with flooding (inland, storm
surge and sea level rise) have been taken into account. Currently,
approaches for addressing future flood risk are not well defined.
Suggestions range from the use of the 1% annual flood elevation
plus an additional 0.61 m (2 ft) of freeboard to the use of the
0.2% annual recurrence (500-yr) flood (Lowery, personal
communication, 2016). NYS prefers a climate-informed science
approach that relies on projections of future precipitation-
intensity frequencies for different durations. This paper describes
the approach used to achieve this goal including 1) evaluation of
downscaling method–climate model combinations in
replicating historical precipitation extremes, 2) application of
downscaling methods to project precipitation extremes in future
periods, 3) quantification of methodological and climate model
uncertainties, and 4) dissemination of results to users via web-
based tools.



Table 1
List of CMIP5 models used.

CMIP5 Model ID Modeling Center/Group Resolution

ACCESS1.0* CSIRO, Australia 1.25� � 1.875�
ACCESS1.3* CSIRO, Australia 1.25� � 1.875�
BCC–CSM1.1 Beijing Climate Center, China 1.125� � 1.125�
BCC–CSM1.1(m) Beijing Climate Center, China 2.8� � 2.8�
BNU–ESM Beijing Normal University, China 2.8� � 2.8�
CCSM4 National Center for Atmos. Research,

USA
0.9� � 1.25�

CMCC–CM* Euro–Mediterranean Centre on
Climate Change, Italy

0.75� � 0.75�

CNRM–CM5 National Centre for Meteorological
Research, France

1.4� � 1.4�

CSIRO–Mk3.6.0 CSIRO, Australia 1.875� � 1.875�
CanESM2 Canadian Centre for Climate

Modeling and Analysis, Canada
1.875� � 1.875�

FGOALS–g2* LASG, China 2.8� � 2.8�
GFDL–CM3 Geophysical Fluid Dynamics Lab, USA 2.0� � 2.5�
GFDL–ESM2 G Geophysical Fluid Dynamics Lab, USA 2.0� � 2.5�
GFDL–ESM2 M Geophysical Fluid Dynamics Lab, USA 2.0� � 2.5�
GISS–E2–H NASA Goddard Inst. for Space Sci.,

USA
2.0� � 2.5�

GISS–E2–R NASA Goddard Inst for Space Sci, USA 2.0� � 2.5�
HADGEM2–ES* Met Office Hadley Centre, United

Kingdom
1.25� � 1.875�

IPSL–CM5A–LR Pierre Simon Laplace Institute, France 1.9� � 3.75�
IPSL–CM5A–MR Pierre Simon Laplace Institute, France 1.25� � 2.5�
IPSL–CM5B–LR Pierre Simon Laplace Institute, France 1.9� � 3.75�
MIROC–ESM JAMSTEC/AORI/NIES, Japan 2.8� � 2.8�
MIROC–ESM–CHEM JAMSTEC/AORI/NIES, Japan 2.8� � 2.8�
MIROC5 JAMSTEC/AORI/NIES, Japan 1.4� � 1.4�
MRI–CGCM3 Meteorological Research Institute,

Japan
1.125� � 1.125�

NorESM1–M Norwegian Climate Center, Norway 1.9� � 2.5�

* These models were used for the quantile delta method but not the analog
method.
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2. Data

2.1. Observed station data

To coincide with existing extreme precipitation climatologies
(e.g. Perica et al., 2013), a set of 157 long-term Global Historical
Climate Network (GHCN) stations (Menne et al., 2012) located in
and adjacent to New York were the primary data source (Fig. 1).
These daily data were obtained via the Applied Climate Informa-
tion System (ACIS) supported by the Northeast Regional Climate
Center (DeGaetano et al., 2015). Stations were required to have
valid precipitation observations (i.e. not missing or flagged by
GHCN quality control) on at least 95% of all days during the
1961–2010 period. To achieve a higher station density, the valid
data criterion was relaxed to 85% to include sites located more
than 25 km from those with 95% data availability and subsequently
a few stations with at least 75% data availability were included if
they were located more than 25 km from the others.

2.2. Gridded data sources

Historical and future atmosphere–ocean general circulation
model (AOGCM) and Earth System model (ESM) output was
obtained from two sources. Simulations from the models’ historical
period and two future Representative Concentration Pathways
(RCP4.5 and RCP 8.5) (Collins, 2013) were used. At the global scale,
daily precipitation simulations from 25 models (Table 1) included
in Phase 5 of the Coupled Model Intercomparison Project (CMIP5)
(Taylor et al., 2012) were downloaded from http://pcmdi9.llnl.gov.
In addition to daily precipitation output, 6-hourly specific humid-
ity, zonal wind and meridional wind fields were obtained from 20
CMIP5 models. These variables were necessary to compute 850-
hPa relative vorticity (f850), total precipitable water (TPW), and
vertically integrated water vapor transport (IVT) for analog-
method (Castellano and DeGaetano, 2015) downscaling.

Daily precipitation simulations from the Coordinated Regional
Climate Downscaling Experiment (CORDEX; Jones et al., 2011),
were also obtained from the website https://na-cordex.org. The
CORDEX simulations consist of regional climate models (RCMs)
run at approximately 50-km resolution and driven by AOGCMs
or ESMs from CMIP5. Four CORDEX model combinations are cur-
rently available for the North American domain.

To construct the set of historical precipitation extremes needed
for analog-method downscaling, the necessary 6-hourly variables
Fig. 1. Global Historical Climatology Network stations in New York and surround-
ing areas of adjacent states and Canada.
were obtained or computed from the National Centers for Environ-
mental Prediction–National Center for Atmospheric Research
(NCEP–NCAR) Reanalysis (Kalnay and Coauthors, 1996). The
NCEP–NCAR reanalysis data are available at 2.5� � 2.5� horizontal
resolution and 17 vertical pressure levels between 1000-hPa and
10-hPa. The utilization of the NCEP-NCAR Reanalysis data allows
for gridded comparison between CMIP5 patterns and historical
analog patterns.
3. Extreme value analysis

Recurrence interval precipitation amounts were computed
based on partial duration series (PDS) of the n largest independent
daily precipitation events, where n is the number of years in the
station record (Wilks and Cember, 1993). To be considered inde-
pendent, chronologically successive PDS events had to be sepa-
rated by at least seven days (Xuereb and Green, 2012). For the
station data and the historical climate model simulations, PDS
spanned the 1970–1999 period (n = 30). For consistency, PDS for
future time periods were also limited to 30 years. Periods of
30 years also characterized the shortest observational records used
in current extreme precipitation analyses.

After PDS were constructed for each station, precipitation
amounts corresponding to 2-, 5-, 10-, 25-, 50-, and 100-year recur-
rence intervals were computed using two statistical fitting
approaches. The first approach, hereafter referred to as Beta-P,
employs the Levenberg-Marquardt method (Press et al., 1986) of
maximum likelihood estimation to fit the Beta-P distribution
(Mielke and Johnson, 1974) to each station’s PDS. Wilks (1993)
examined several candidate probability distributions for estimat-
ing precipitation extremes and concluded that the Beta-P distribu-
tion best captured the extreme right tail of precipitation events in
the northeastern U.S.

http://pcmdi9.llnl.gov
https://na-cordex.org
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The second approach, hereafter referred to as L-moments, first
groups stations based on similarities in their extreme precipitation
distributions, and then applies L-moments regional frequency
analysis (Hosking andWallis, 1997) to compute recurrence interval
amounts. Station groups were determined by running two-sample
Kolmogorov–Smirnov tests on the PDS cumulative distribution
functions at different pairs of stations (DeGaetano, 1998). The gen-
eralized extreme value (GEV) distribution was fit to each station’s
PDS, with regionally averaged shape and scale parameters speci-
fied for all stations in a given group. The U.S National Weather Ser-
vice (NWS) is currently using a similar L-moments approach to
create revised (observed) precipitation-frequency atlases for
regions within the U.S. (Perica et al., 2013). As Fig. 2 suggests,
the Beta-P and L-moments approaches yield very similar values
at shorter recurrence intervals, but at longer return periods, larger
differences emerge. In particular, the GEV-based L-moments values
at longer recurrence intervals are typically lower than the Beta-P
values, as expected based on Wilks (1993). Maps showing the cur-
rent observed geographic patterns of extreme rainfall recurrence
frequencies can be viewed at http://precip.net or http://hdsc.nws.
noaa.gov/hdsc/pfds/pfds_maps.html .

When computing extreme precipitation statistics it is important
to recognize that there are several inherent sources of uncertainty.
In addition to the choice of theoretical extreme value distribution
and fitting technique, the assumption that the PDS sample reflects
the true population of extreme precipitation events leads to uncer-
tainty in the computation of recurrence interval precipitation
amounts. This is exacerbated by differences in the available data
records among stations (Ward et al., 2015). To quantify this source
of uncertainty, a resampling approach was used. For each station’s
n-year PDS, n precipitation amounts were randomly selected with
replacement 1000 times. After computing the Beta-P and L-
moments recurrence interval precipitation amounts for each of
Fig. 2. Comparison of 2-year (red) and 100-year (blue) recurrence interval precipitation a
and maximum-likelihood Beta-P distribution fitting.
these 1000 trials, the 5th and 95th percentiles were determined
for each recurrence interval to represent lower and upper confi-
dence interval bounds.

Based on the fitted daily precipitation extremes, IDF curves
were formulated. User requirements necessitated that the IDF
curves include 1-, 2-, 3-, 6-, 12-, 18-, and 24-h duration precipita-
tion intensities. Sub-daily recurrence interval precipitation
amounts were estimated by applying empirical adjustment factors
to the daily recurrence interval precipitation amounts (McKay and
Wilks, 1995). Thus, future changes in sub-daily precipitation
amounts are proportional to the projected changes in daily precip-
itation amounts.

The use of static adjustments is warranted based on the stability
of empirical adjustments through time (and space) in the United
States despite marked changes in daily extreme precipitation fre-
quency (e.g. compare Hershfield, 1961 with Perica et al., 2013).
Similarly, Palecki et al. (2005) found that 15-min rainfall intensity
increased significantly only in winter, when few PDS rainfall events
are observed. During other seasons, sub-daily rainfall trends during
1972–2002 showed a mix of non-significant increases and
declines.

However, Westra et al. (2014) caution that rainfall intensity at
sub-daily time scales may be more sensitive to increases in tem-
perature than daily values. Unfortunately current global climate
models are limited in their ability to simulate these time and space
scales. This makes projections of sub-daily rainfall extremes uncer-
tain. Recent studies examining sub-daily precipitation intensities
using regional climate models show considerable variation. A case
study for Sydney, Australia (Cortés-Hernández et al., 2015) showed
that model-simulated sub-daily precipitation intensities underes-
timated the observations. Across Europe, the sign of future changes
in sub-daily extreme precipitation varied regionally in RCM simu-
lations (Scoccimarro et al., 2015). Users of the resulting projections
mounts at the 157 stations shown in Fig. 1 based on regional L-moments GEV fitting

http://precip.net
http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_maps.html
http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_maps.html
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should be aware of these uncertainties and ideally require routine
updates of the statistics based on additional data, refined model
simulations, and increased scientific understanding.

A logarithmic regression was fit to the intensity–duration rela-
tionship to create smoothed IDF curves and interpolate recurrence
interval precipitation amounts at intermediate durations. Upper
and lower confidence interval IDF curves were smoothed in an
analogous manner.
4. Downscaling

Since future IDF curves for individual stations were the main
project deliverable, spatial downscaling was necessary to isolate
station-scale climate information from the coarse-scale climate
model output. For the purpose of this study, three different down-
scaling methods were applied. Both statistical and dynamical
approaches were used.
4.1. Quantile delta method downscaling

The first downscaling method employs quantile delta mapping
(Cannon et al., 2015) to estimate future precipitation extremes
Fig. 3. Illustration of the analog downscaling method in which a single AOGCM simulatio
precipitation pattern corresponding to the selected analog, the historical values are reas
AOGCM simulation.
based on time-dependent changes in simulated CMIP5 precipita-
tion extremes. Daily precipitation estimates at each station were
interpolated from a weighted average of simulated daily precipita-
tion over the four nearest grid cells. Grid cell weights were deter-
mined based on an inverse-distance-squared relationship. Next,
PDS of the largest interpolated daily precipitation estimates at each
station were constructed for the historical and future periods, and
the Beta-P and L-moments approaches were used to compute the
corresponding recurrence interval precipitation amounts. Due to
the relatively coarse CMIP5 grid resolutions, no attempt was made
to convert from areal to point precipitation values. Rather, future
downscaled recurrence interval precipitation amounts were esti-
mated by calculating the percent change in precipitation extremes
between the interpolated historical and future periods, and then
applying this factor to the observed precipitation extremes at the
corresponding station.

In order to test the veracity of percent change factors computed
in this manner, an upscaling experiment was conducted using out-
put from the CORDEX simulations. The original 50-km resolution
CORDEX output was aggregated to 100-, 150-, and 200-km grids
by averaging sets of 4, 9, or 16 adjacent 50-km grid cell values,
respectively. Results from this upscaling experiment suggest that
grid cell resolution did not affect the magnitude of percent change.
n is paired with one of an array of potential historical analogs. Based on the observed
signed to obtain a future rainfall projection. The process is repeated for each daily
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While relevant to the specific variable (CORDEX precipitation) and
region, this result should not be broadly applied to different geo-
morphological regions and/or variables.
4.2. Dynamic downscaling

The second downscaling method uses a simple bias correction
technique to adjust dynamically downscaled precipitation
extremes from the CORDEX simulations. As in the first method,
daily precipitation estimates at each station were interpolated by
an inverse-distance-squared-weighed average of simulated precip-
itation over the four closest CORDEX grid cells. PDS of the largest
interpolated daily precipitation estimates at each station were con-
structed for the historical and future periods and the Beta-P and L-
moments approaches were used to compute the corresponding
recurrence interval precipitation amounts.

Because the simulated recurrence interval precipitation
amounts were derived from daily precipitation totals averaged
over 50-km grid cells, areal reduction factors (ARFs) were used to
convert gridded precipitation to point values. For each return per-
iod, ARF was estimated by

ARF ¼ 1� exp atb
� �þ exp atb � cA

� �
; ð1Þ

where t is the precipitation duration (hr), A is the grid area
(1000 km�2), and a, b, and c are empirically derived coefficients
based on 24-h precipitation durations (Allen and DeGaetano, 2005).
Fig. 4. Box-plots of bias (ratio of 100-year recurrence interval climate model precipitation
model analog method downscaling. Box plot pairs show extreme values fit based the B
shows the average over all simulations for the specific downscaling method.
Model biases were determined by computing the ratio of the
ARF-adjusted recurrence interval precipitation amounts to the
observed recurrence interval precipitation amounts during the his-
torical period. Final future downscaled precipitation extremes
were estimated by applying these bias correction factors to the
ARF-adjusted future recurrence interval precipitation amounts
with the assumption that model biases remain constant with time.
This procedure is analogous to the quantile delta method discussed
in the previous subsection, but allows for evaluation of historical
biases.

4.3. Analog method

The third downscaling method employs an approach for down-
scaling daily precipitation extremes from historical analogs
(Castellano and DeGaetano, 2015). Analog days were selected
based on minimization of standardized root mean squared errors
(RMSE) between predictor variables (f850, TPW and IVT) from all
days in the AOGCM simulations (hereafter AOGCM target days)
and predictor variables on all candidate analog days spanning the
1961–2010 period (regardless of whether rainfall was observed).
For the purpose of this study the RMSE calculation was restricted
to the region bounded by 20�N, 105�W– 55�N, 50�W. These predic-
tors represent synoptic-dynamic processes and thermodynamic
environments commonly associated with heavy precipitation and
flash flooding (Maddox et al., 1979; Doswell et al., 1996;
Hirschboeck et al., 2000). Data fields for the historical analog days
to observed value) at 157 station locations for a) CORDEX simulations and b) CMIP5
eta-P (left) and L-moments approaches (right). The leftmost pair of boxplots (gray)
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were derived from 6-hourly NCEP–NCAR reanalysis, whereas the
data fields on target days were derived from 6-hourly CMIP5model
output. For each daily AOGCM simulation, a single analog day was
randomly selected from the pool of historical analogs correspond-
Fig. 5. Station specific a) CORDEX and b) analog method downscaling CMIP5 bias
associated with the 100-year recurrence interval interpolated to a 0.5� � 0.5� grid.

Fig. 6. Box-plots of mean percent change (modeled future period to model-simulated
quantile delta method (green), CMIP5 models downscaled using CORDEX (red), and an
represent the set of changes across 157 stations.
ing to the 30 smallest RMSE values, with the probability of selec-
tion weighted by standardized RMSE (Fig. 3).

To translate the analog pattern to station precipitation, the 157
stations were first partitioned into five clusters based on how reg-
ularly different pairs of stations received extreme precipitation
from the same meteorological event during the 1961–2010 period.
Extreme precipitation was defined as the 50 largest precipitation
events in the 1961–2010 period, separated by at least one week
to assure independence. Defined in this way the set of extreme pre-
cipitation days formed the PDS commonly used in extreme rainfall
frequency analysis. This cluster analysis accounted for the spa-
tiotemporal variability in extreme precipitation across the study
domain.

Then, it was determined if extreme precipitation occurred at any
stations within each cluster on the selected analog day. If only one
station in a specific cluster recorded a PDS event within a three-
day window centered on the analog day, the corresponding daily
precipitation amount was randomly assigned to one station in the
cluster. The probability of assigning this precipitation amount to a
station was quantified by isolating those daily events in which only
one station in the cluster reported a PDS event during the 1961–
2010 period and the computing the percentage of times that each
specific station was represented in this subset.

If multiple stations in a cluster recorded a PDS event within the
three-day window, each station’s maximum daily precipitation
observation over the three-day period was extracted (Fig. 3, Step
1), and these maximum daily precipitation observations were
ascribed to all stations in the cluster in the following manner. The
largest daily precipitation amount was always assigned separately
based on each station’s climatological probability of receiving the
largest daily precipitation amount during a multi-station event to
account for topographic effects (Fig. 3, Step 2). All remaining max-
imum daily precipitation amounts were randomly assigned with
equal probability to the remaining stations in that cluster (Fig. 3,
Step 3). If no stations in the cluster experienced a PDS event on
the selected analog day, no precipitation amounts were assigned.

PDS constructed from the analog precipitation amounts were fit
using the Beta-P and L-moments approaches to compute analog
recurrence interval precipitation amounts. In order to minimize
the effect of selecting one historical analog for each model day,
the process of randomly selecting historical analogs, ascribing pre-
cipitation amounts, and computing recurrence interval precipita-
tion amounts was repeated 1000 times. The median values of the
1000 Beta-P and L-moments precipitation extreme populations
were chosen to represent the final downscaled precipitation
threshold estimates. Similar to the dynamically downscaled projec-
1970–1999 historical period 100-year recurrence interval precipitation) based on
alog approach (blue) for a) 2010–2039, b) 2040–2069 and c) 2070–2099. Boxplots
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tions, the future downscaled precipitation extremes were adjusted
by bias correction factors calculated from a comparison of the his-
torical downscaled recurrence interval precipitation amounts and
the observed recurrence interval precipitation amounts.
4.4. Quantifying uncertainty in downscaled projections

From the different downscaling method–climate model combi-
nations, a set of 49 extreme precipitation projections (25 quantile
method + 4 CORDEX + 20 analog method) was created at each sta-
tion for each of the two climate scenarios and three time periods.
For each set, the mean and 10th, 25th, 50th, 75th, and 90th per-
centiles were computed. These percentile values quantified the
variability in future extreme precipitation projections among the
climate model-downscaling method combinations.
Fig. 7. Station-specific percent change (modeled RCP 8.5 2070–2099 period to
model-simulated 1970–1999 historical period) interpolated to a 0.5� � 0.5� grid for
the climate model –downscaling method combination yielding the a) 10th
percentile b) average and c) 90th percentile percent change at each station.
5. Results

5.1. Historical bias

Before creating downscaled extreme precipitation projections
for the future climate scenarios, the ability of each downscaling
method–climate model combination to generate realistic estimates
of observed recurrence interval precipitation amounts during the
1970–1999 period was assessed. Biases were computed as the ratio
between the downscaled and observed recurrence interval precip-
itation amounts at each station for a specified return period. Fig. 4
shows boxplots of ensemble mean and individual model biases in
100-year recurrence interval precipitation amounts estimated
from the dynamical and analog downscaling methods. Each box-
plot characterizes the distribution of biases across the 157 stations.
In general, the results for other recurrence intervals were similar.

Collectively, both downscaling methods yield realistic 100-year
recurrence interval precipitation amounts at most stations (Fig. 4).
However, pronounced differences exist between models and across
stations. On average, the dynamical downscaling method overesti-
mates recurrence interval precipitation amounts by approximately
5–10% (Fig. 4a), whereas the analog downscaling underestimates
the precipitation extremes by a similar amount (Fig. 4b). On aver-
age, the L-moments approach consistently yields lower extreme
values than the Beta-P approach and therefore moderates the
biases associated with dynamic downscaling while exacerbating
the analog method biases.

Due to the use of regionally averaged shape and scale parame-
ters, L-moments biases exhibit substantially less station-to-station
variability than the Beta-P biases. Particularly in the analog
approach, the interquartile range of L-moments biases is often half
that of the Beta-P biases (Fig. 4b). Additionally, the range of model
biases computed from the Beta-P approach increases with return
period (not shown), suggesting that the Beta-P approach is some-
what sensitive to return period length. This sensitivity is not appar-
ent using the L-moments approach. Given this feature, as well as
the use of the L-moments methodology in the official observed cli-
matology of precipitation extremes (Perica et al., 2013), the L-
moments approach was adopted in all future analyses.

Fig. 4 also illustrates the variation in extreme precipitation
biases among the different models. For the analog method, there
is as much as a 20% difference in median recurrence interval pre-
cipitation biases among the models. Using the L-moments
approach, the Beijing Normal University Earth System Model
(bnu esm) exhibits essentially no bias, whereas the Geophysical
Fluid Dynamic Laboratory Earth System Model 2 g (gfdl esm2 g)
and Norwegian Climate Centre Earth System Model 1 m
(noresm1-m) underestimate the 100-year precipitation amount
by nearly 20%. For the dynamically downscaled CORDEX simula-
tions, the sign of the bias appears to be more related to the regional
model used in downscaling as opposed to the driving earth system
model (Fig 4a). Although the set of CORDEX simulations is cur-
rently limited, the two Rossby Centre regional climate model
(RCA4) simulations tend to produce relatively small dry biases. Rel-
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atively smaller biases are also associated with the simulations dri-
ven by the European Consortium earth system model (EC-EARTH).

Fig. 5 illustrates the spatial variability of model mean bias in
100- year recurrence interval precipitation amounts. In this and
subsequent figures, station values are interpolated to a
0.5� � 0.5� grid using the interp function (bilinear interpolation)
in the matplotlib 1.0.8 toolkit http://matplotlib.org/basemap/api/
basemap_api.html. The CORDEX simulations overestimate 100-
year precipitation amounts throughout much of the state
(Fig 5a), particularly in parts of western New York and over the
mountainous northeastern region. Low (dry) biases are most pro-
nounced in the coastal southeast across New York City and Long
Island. By comparison, the analog downscaling method underesti-
mates 100-year precipitation amounts across nearly the entire
state (Fig. 5b). High biases are confined to the eastern part of the
state. Biases are generally smallest in those areas where the COR-
DEX biases were largest.
5.2. Future projections

Fig. 6 summarizes the projected future percent change in 100-
year model-mean precipitation amounts across all stations.
Fig. 8. Station-specific average percent change (modeled RCP 8.5 2070–2099 period to m
quantile delta simulations (RCP4.5); b) quantile delta simulations (RCP8.5); c) CORDEX si
(RCP4.5); f) analog method simulations (RCP8.5).
Regardless of time period or concentration pathway, the dynami-
cally downscaled CORDEX simulations exhibit the largest station-
to-station variability. This is likely an artifact of the limited num-
ber of available CORDEX simulations, but may also be influenced
by the higher resolution of the CORDEX data. For instance, only
CORDEX simulations suggest that extreme precipitation may
decrease at some stations during the early 21st century. Despite
these projected decreases, the CORDEX simulations also project
the largest increases throughout the mid-to-late 21st century
(Fig. 6). By the end of the century, the CORDEX simulations project
precipitation extremes to increase at all stations, with increases of
40–50% indicated at some locations. Station-to-station variability
increases with time, regardless of downscaling approach.

In the 2010–2039 period, the 100-year precipitation amounts
exhibit a median increase of between 5 and 10% across the 157 sta-
tions. The quantile delta and analog downscaling methods suggest
increases at all stations, with the largest increase near 15%. The
effect of greenhouse gas concentration appears to be minimal dur-
ing this period.

By mid-century (2040–2069), the effect of concentration path-
way becomes more pronounced. The median increase in 100-
year precipitation amounts is less than 10% for all downscaling
odel-simulated 1970–1999 historical period) interpolated to a 0.5� � 0.5� grid for a)
mulations (RCP4.5); d) CORDEX simulations (RCP8.5); e) analog method simulations

http://matplotlib.org/basemap/api/basemap_api.html
http://matplotlib.org/basemap/api/basemap_api.html
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methods under RCP4.5, but increases to 10–20% under the high
concentration case (RCP8.5). Except for a few stations that still
show decreases in extreme precipitation in the CORDEX simula-
tions, on average the three downscaling approaches project similar
changes under RCP4.5. Under RCP8.5, the different downscaling
methods lead to more pronounced differences in the expected
increase in precipitation extremes.

The differences between concentration pathways and down-
scaling methods are most pronounced in the 2070–2099 period.
Regardless of downscaling method, 100-year precipitation
amounts are expected to increase at all stations. Median changes
range from 10–20% under RCP4.5, but vary considerably from 15%
for the analog method to over 35% in the CORDEX simulations
under RCP8.5. As in the RCP8.5 simulations during 2040–2069,
there is a clear tendency for CORDEX simulations to produce
the largest changes and the analog method to produce the small-
est changes. For the RCP8.5 pathway in 2070–2099, there is no
overlap of the interquartile ranges of the three downscaling
methods.

As Fig. 7 illustrates, there is little consistency in the geographic
variation in extreme precipitation change. Averaged across all cli-
mate model-downscaling method combinations, the projected
change in 100-year recurrence interval extreme precipitation
Fig. 9. As in Fig. 8, but for
amounts by the 2070–2099 period (RCP 8.5) is between 15 and
25% statewide. For the 10th percentile change at each station,
extreme precipitation changes tend to be smallest near the coast
and largest inland to the north and west. Conversely, the spatial
pattern of extreme precipitation change associated with each sta-
tion’s 90th percentile change suggests larger changes in the coastal
southeast compared to the rest of the state.

Looking at the individual downscaling techniques, the quantile
delta method produces the largest percentage changes in 100-year
recurrence interval rainfall across southeastern NYS for the late-
century simulations (Fig. 8a, b), but this pattern is not as evident
for mid-century (Fig. 9a, b) period. The CORDEX simulations exhi-
bit notably more grid-to- grid variation than the other downscaling
methods and hence lack a consistent geographic pattern (Figs. 8c, d
and 9c, d). Like the quantile-delta-method results, there is only
modest consistency in the spatial pattern of projected changes
across different concentration pathways and time periods. The
analog method yields the most consistent spatial pattern of future
change, with the smallest changes in southeastern New York and
generally larger changes to the north and west (Figs. 8e, f
and 9e, f). Attributing these findings to some aspect of the down-
scaling techniques is a goal of future research that is beyond the
scope of this paper.
the 2040–2069 period.



Fig. 11. Sample map-based product from the website http://ny-idf-projections.
nrcc.cornell.edu/ showing projected (RCP 8.5) 2070–2099 recurrence intervals
associated with the precipitation amounts that defined the 100-year recurrence
interval storm in 1970–1999.
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6. Transition from research to application

To facilitate use by the engineering community in NYS, research
results have been made accessible via an interactive website http://
ny-idf-projections.nrcc.cornell.edu/. The primary tool used by engi-
neers to develop design standards based on extreme precipitation
statistics is the IDF curve. The IDF graph (Fig. 10) and accompanying
tabular data relate precipitation duration (hours) to intensity (in/hr
in the U.S.) for different recurrence intervals. Thewebsite presents a
map interface showing station locations. Once a user selects a sta-
tion by clicking one of the icons displayed on the map, the user is
prompted to select a recurrence interval, concentration pathway,
and a future time period. These selections change the IDF graphic
and table displayed in the right column of the page.

The IDF curve that is displayed (Fig. 10) shows both the histor-
ical (based on observed precipitation) and projected future IDF
curves. The two shaded regions illustrate uncertainty. The blue
region in Fig. 10 shows the 90% confidence interval for the
observed data derived from Monte-Carlo resampling of the
observed PDS (DeGaetano, 2009). The red area is bounded by the
90th and 10th percentiles of the 49 climate model-downscaling
method combinations. The decision to pool all of the projection
combinations, was driven in part by stakeholder preference (desire
for a single IDF graphic) but also by the patterns of downscaling
method bias (Fig. 4) and the systematic differences in the magni-
tude of projected changes among the combinations (Fig. 6). Partic-
ularly for high concentrations and the later part of the century, the
upper bound of the projection envelope typically corresponded to
the CORDEX simulations while the lower bound was generally
associated with the analog projections. Since the medians of the
Fig. 10. Sample IDF curve product from the website http://ny-idf-projections.nrcc.corn
precipitation intensities under RCP 8.5 for the station at Ithaca, NY.
quantile delta and analog downscaling projections were similar
(except for the late century RCP 8.5 simulations) the projected
mean IDF curve in Fig. 10, reflects both of these downscaling
approaches.
ell.edu/ showing historical and projected 2040–2069 100-year recurrence interval

http://ny-idf-projections.nrcc.cornell.edu/
http://ny-idf-projections.nrcc.cornell.edu/
http://ny-idf-projections.nrcc.cornell.edu/
http://ny-idf-projections.nrcc.cornell.edu/
http://ny-idf-projections.nrcc.cornell.edu/
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Typically, the confidence interval and 10th-to-90th-percentile
envelope overlap, indicating that the lowest projections fall within
the observed confidence interval bounds. This allows a user to view
the future projections in the context of the uncertainty inherent to
the historical data. It also suggests that a feasible (although lenient)
adaptation requirement would be the use of the observed data’s
upper confidence interval bound. A more stringent criterion for
considering future extreme precipitation amounts could be based
on the solid line in the IDF curve. This line represents the mean
intensity over the 49 climate model-downscaling-method combi-
nations for the specified time period and concentration pathway.

In addition to the IDF curves, the website also provides more
general map-based information for policy makers and other non-
technical audiences. The website allows users to view maps of pro-
jected changes in precipitation extremes, as well as related maps
showing the relative frequency of future precipitation events com-
pared to the observed historical frequency (Fig. 11).

7. Summary

NYS legislation requires that state agencies, local governments
and engineers account for climate change in certain planning,
funding and permitting decisions. Informed by the latest collection
of climate model simulations and climate data downscaling tech-
niques, tools and quantifiable guidance for implementing CRRA
in decisions affected by precipitation extremes are now available.

The outcomes of this work provide a template for other climate
service providers to develop and disseminate climate-science-
informed information for climate change adaptation. Although
only modest increases in precipitation extremes are expected
through the early part of the 21st century, substantial increases
in extreme precipitation intensity are projected by the end of the
century. Despite the caveats associated with the ability of AOGCMs
to simulate changes in specific extreme weather events, planning
for future climate resiliency requires that certain decisions be
made today using the best available information concerning future
changes. By understanding the uncertainly associated with both
historical extreme precipitation statistics and projections of future
values, policy makers can be informed by the latest climate
science. However, to be most effective, an iterative process must
be put in place such that recommendations and decisions are ree-
valuated at set intervals based on 1) advances in climate science
and modeling and 2) evaluation of past projections in light of the
evolving observational climate record. Climate service providers
should be prepared to assume this operational role, which differs
considerably from the publication of static extreme precipitation
climatologies. In NYS, such a user need is clearly articulated in
CRRA’s mandate that sea-level rise projections be updated at least
every five years. A similar provision for extreme precipitation pro-
jections is essential.
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